Durable, Adaptable, Accurate

casestudy

Campbell Scientific (CSC) are an ISO 9001 certified company who are a leading manufacturer in a variety of applications related to weather, water, energy, gas flux and turbulence, infrastructure, and soil. Campbell Scientific, are committed to satisfying the instrumentation needs of their customers, and are internationally recognised in the measurement and control industry for producing accurate and dependable instruments

csc2

HC2A-S3

 

CSC systems are acclaimed for their dependability, which they demonstrate even in the most extreme weather climates. Their attributes include wide operating ranges, low energy usage, many communications options, and the flexibility to support a wide variety of measurement  and control applications. Applications include, agriculture, air quality, fire warning, water quality, weather and climate recording, structural monitoring, Geo-technical monitoring and mining.

Rotronic and CSC have been business partners for many years, CSC uses the standard Rotronic meteo probe in many applications. Recently CSC installed the probe in a network of Road Weather Information Systems  in Kelowna, British Columbia. CSC selected the probe because of its reliability, ease of use and accuracy. The HC2A-S3 is also highly regarded for its ability to function in extreme temperatures, this makes it good for the  Canadian climate, and a perfect complement to Campbell Scientific systems.

csc2
” We value the Rotronic HC2A-S3 probe for its ability to function at extreme temperatures.” Mike Ryder Campbell Scientific, Canada

For more information on the latest HC2A-S click here ,or for any of our products please visit the Rotronic website.

Meteorology Numerical Weather Prediction

casestudy

The calculation of weather data

What is the weather going to be like tomorrow?

For a long time, people have tried to predict weather conditions using the hydrologic climate cycle.In the early 1920’s scientists were able to compile a six hour forecast, back then it took six weeks to analyse weather data collected at only two points in Europe and calculate, by hand, a useful illustrative model. Today, supercomputers are used to predict the weather for a period of several weeks. The complex modelling programs require several million data points for parameters such as temperature, humidity, pressure, vertical & horizontal wind velocity with time stamps and absolute coordinates. To create a correlation between the data and the environment, scientists “slice” the atmosphere virtually into smaller horizontal &vertical parts—this process is called discretisation. It is more useful to compute the chronological change of the parameters using this model.

watercycle-pageClockwise from top left: Map of the average temperature over 30 years. .Weather station on Mount Vesuvius. .Water cycle summary

Meteorological events that are too “small” such as a single thunderhead, layer clouds or smaller turbulence’s will be parameterised through variables. This parameterisation is a science of its own that aims to reduce uncertainties as best as possible. Every forecast calculation starts with the current weather conditions. The quality of this input is crucial for the accuracy of the final forecast. Meteorologists link the forecast of yesterday’s weather with the actual measured parameters. Only large data centres are capable of computing this data assimilation. The overall result is a best possible calculation basis predict the weather for the next day. If this groundwork is flawed the forecast may be incorrect. For example, it could report rain at the wrong location. Today’s meteorological mathematicians also take parameters into account that change extremely slowly compared to the other factors. Growth and the reduction of polar ice, or the temperature of the oceans are summarised as boundary values. After a model is run using all the available data, meteorologists process and customise reports for a wide range of target groups such as public authorities, flight control centres, energy producers, industries and many more. These reports also include specific weather warnings.

Why the need to measure humidity?

Atmosphere_composition_diagramAtmosphere composition diagram

As described above, the daily weather forecast relies on the precise measurement of weather parameters. The science of numerical weather prediction aims to describe the daily hydrologic cycle in numbers. Humidity plays an  important role. Typically, data errors will multiply during calculations. Humidity values influence weather calculations e.g. through the water vapour balance equation— this formula expresses the influence of humidity through rain & condensation, and vice versa. Incorrect measurement or incomplete humidity data directly leads to wrong predictions of a huge number of weather phenomena such as the condensation altitude of clouds, locations of hyetal regions, fog layers and storms. In 1999, incorrect data sent by a weather station in Nova Scotia, Canada led to a incorrect forecast for Hurricane Lothar two days before it hit Central Europe. Authorities were insufficiently prepared to alert people in time. The prediction of rain and snowfall is still challenging for meteorologists. Only more extensive networks of weather stations and enhanced mathematical models will reduce problems due to unknown factors.

Facts & Figures

  • 7 inches is the diameter of the largest hailstone ever recorded.
  • Sukkur City in Pakistan is one of the most humid places in the world with
    30 °C dew point & a felt air temperature of 65 °C.
  • A study showed that a small thunderstorm system holds more than 10 million tons of water.
  • No two weather patterns are completely alike.
  • Some weather models assimilate data obtained from more than 25,000 weather stations.

At the Forefront of Health Care

casestudy

Original Article from www.rotronic.com

Rotronic has released launched our next generation server based Environmental Monitoring System (RMS), but here we take a look at our traditional system that is still fully supported and widely used in the pharmaceutical industry and beyond. 

The German pharmaceutical manufacturer Dr. R. Pfleger Hygrolog NTGmbH requires specialist cleanroom environments for many areas of production and development. It is vital for the company to monitor and verify pressure conditions as well as humidity and temperature  data in its cleanrooms. To meet this need,the company uses validated Rotronic data loggers from the Hygrolog HL-NT series.

Together with  the Rotronic validated HW4 monitoring software, these data loggers deliver important information on the environments that have an influence on the production of pharmaceutical products.

The Rotronic monitoring system has stood the test of time in the market over many years and undergone continuous development. The HW4 software forms the heart of the system. It visualises and saves all data, configurations and user events and also triggers alarms. Its audit trail logs all data and activities in compliance with FDA21 CFR Part 11 and GAMP5. Rotronic calibrated, qualified and validated Dr. R. Pfleger GmbH’s monitoring system according to GMP requirements.

Overall control and regulation
The management system forms the basis for operation, monitoring and control of the technical facilities as well as for data and message management. Apart from the technical installations, the validated clean room monitoring system is implemented
directly in FIS (OPC interface).

HygroLog HL-NT data logger – The central acquisition unit is a HygroLog-HL-NT data logger. It provides digital inputs for HygroClip humidity and temperature probes as well as Pt100 and 4…20 mA devices.

Dr Pfleger1The data logger is also equipped with a memory card which not only stores the measurement of data but also all the events in the instrument itself.

HC2-S sensors
The digital HygroClip2 climate probes provide class leading precision and long-term stability. All calibration and adjustment data is stored internally. Their standard accuracy ex works is ±0.8 %rh and ±0.1 K, for more demanding tasks, sensors with an accuracy of ±0.5 %rh can be supplied.

Sophisticated Software  – The HW4 software saves the measurement data, alarms and events in a protected binary format. Any manipulations are detected and the data record is then marked as corrupt. Instruments are organised in groups and shown in the room layout. Colour changes make alarms and disturbances easy to recognise.

Evaluation and archiving
A data file is created for every measuring point. Mean Kinetic Temperature values are calculated from this raw data. The evaluation also contains alarm times and deviations and is presented in the form of a table with statistical values. Thanks to the high level of integration of the hardware in HW4, virtually all Rotronic instruments can be implemented in the existing monitoring system.

Customer benefits
The monitoring system implemented by Rotronic offers a consistent solution, since all main and secondary installations and the monitoring system itself are integrated in the FIS management system, they can be monitored and controlled via a central software platform.

Dr. R. Pfleger GmbH

  •  Medium-sized pharmaceutical company located in the city of Bamberg,
  • The company is entirely owned by the Doktor Robert Pfleger-Foundation
  • The company now markets over 30 medicinal products
  • Primary focus on urological, gynaecological, and dermatological indication

For more information on any of our products please visit the Rotronic website.