Category Archives: CO2

Greenhouses and environmental control

The idea of growing plants in environmentally controlled areas has existed since Roman times. The emperor Tiberius ate a cucumber-like vegetable daily. The Roman gardeners used artificial methods (similar to the greenhouse system) of growing to have the vegetable available on his table every day of the year.

The next step from the conventional greenhouse as we know it today will be the introduction of “vertical farms”. Currently, sophisticated so called “plantscrapers“ are being planned or are already under construction in Sweden, Japan, China, Singapore and the United States.

Skyscraper

Skyscraper farming might yet be a possible answer to the question of how to feed the nine billion people that are expected by the middle of the century. These types of green-houses have a tightly con-trolled level of temperature, humidity & CO2, sophisticated watering systems and in addition to sunlight, advanced artificial LED lighting that is specifically designed and installed for each plant family. This way, the crops grow much faster and very efficiently all year round. It is estimated, that the Swedish plantscraper that is planned to be 54m high, will produce thousands of tonnes of food a year, enough to feed up to 30,000 people.

Facts & figures:

  • Tomato is the second most important commercial vegetable crop after potato. Current world production is about 100 million tonnes produced on 3.7 million hectares.
  • In the year 2000, per capita consumption of fresh tomatoes in the U.S. was 17.8 lb,/ 8.73 kg.
  • About 85 percent of the world’s soybeans are processed, or “crushed,” annually into soybean meal and oil. Around 98 percent of the soybean meal that is crushed is further processed into animal feed.
  • The Food and Agriculture Organization of the United Nations (FAO) reports that world production of carrots and turnips (these plants are combined by the FAO for reporting purposes) for calendar year 2011 was almost 35,658 million tonnes.

Why do we need to measure humidity?

Greenhouse humidity levels are important both in prevent-ing plant diseases and promot-ing healthy and strong plant growth. High humidity can promote Botrytis and other fungal diseases. High humidity also restricts plant transpira-tion, which in turn limits evapo-rative leaf cooling and can lead to overheating of plant foliage. If high humidity persists for a long time, the restriction of transpiration can limit the “transpiration stream” of nutrients and can lead to nutrient deficiencies.

Low humidity levels are best avoided because these may increase foliar transpiration to the extent that the root system cannot keep up. Humidity is perhaps the most difficult of the greenhouse conditions to control. Most growers simply aim to avoid the extremes of humidity. Over most temperature ranges, a greenhouse humidity of 50 – 85 %rh is generally safe. Low humidity can be managed with the use of misters and foggers. It is also useful to shade plants under conditions of low humidity to reduce the rate of transpiration.

Transpiring plants add water vapour to the greenhouse air, increasing the humidity inside the greenhouse. Therefore, managing high humidity starts with ventilation control. Replacing warmer, humid greenhouse air with cooler, drier external air. Ventilation also involves significant energy losses, and therefore ventilation must often be accompanied by heating. Therefore, lowering greenhouse humidity with a combination of ventilation and heating increases energy costs significantly.

Candice 
Area Sales Manager

Rotronic International Sales Meeting 2014 Grindelwald Photo Gallery

Great to see everyone at the 2014 ISM in Grindelwald!

A look at the Beer Brewing Process – Just in time for the Rotronic 2014 International Sales Meeting

Beer brewing in general

There is no exact date, as to when the first beer was brewed but already at the beginning of the fifth millennium BC, people in southern Mesopotamia, in a region known as Sumer (modern Iraq), were brewing beer.

Beer, like other commodities such as wheat and other grains, was used as a currency. A clay tablet, dating from 6’000 BC contains one of the oldest known beer recipes.

Beer Map
Beer consumption throughout the world

The basic ingredients of beer are: water; a starch source: which is able to be fermented; yeast: to produce the fermentation; a flavouring such as hops. Yeast is the microorganism that is responsible for fermentation. Specifically Saccharomyces cerevisiae is the species of yeast that is used for brewing.

Facts & figures:
Beer is the third most popular beverage in the world, coming in directly behind tea and water.
American beer is made mostly from rice. This was invented to give American beer a lighter taste and tap into the market of women buyers.
In the UK 28 million pints of beer are consumed every day, which equates to 100 litres per head each year.
Belgium has over 400 different beer brands.
Cenosillicaphobia is the fear of an empty glass.

There are several steps in the brewing process, which include malting, milling, mashing, lautering, boiling, whirl-pooling, fermenting, conditioning, and filtering.

Step by step brewing:
  • Malting: germination of cereal grains. The sprouted cereal is then kiln dried at around 55°C. Milling: grinding of the malted cereal.
  • Mashing: the cereals are mixed with water and then heated.
  • Lautering: separation of the mash: the liquid (wort) is separated
    from the residual grains.
  • Boiling: the wort is boiled to ensure sterility and then hops are added for flavour!
  • Whirl-pooling: the wort is sent into a whirlpool, removing the dense particles using centrifugal force.
  • Fermenting: yeast is added to the wort: conversion of the carbohydrates to alcohols and carbon dioxide – the chemical conversion of sugars into ethanol!
  • Conditioning: the tank is cooled and the yeast and proteins separate from the beer. This conditioning period is also a maturing period.
  • Filtering: the beer is filtered: stabilising the flavour.
  • Packaging: the beer is packed then to the customers
Example brewing process
Example brewing process
Why the need to measure the carbon dioxide?

Carbon dioxide Carbon dioxide (CO2) is a naturally occurring chemical compound. It is a gas at standard temperature and pressure.

We inhale oxygen and exhale carbon dioxide. The carbon dioxide level in exhaled air is rather constant: around 3,8%. When carbon dioxide is exhaled it will quickly be mixed with the surrounding air even indoors and provided that the ventilation is good, the concentration will be reduced to harmless levels. Indoor carbon dioxide levels usually vary between 400 and 1’200 ppm (parts per million). Outdoor carbon dioxide levels are usually 350 – 450 ppm.

Beer brewing process: Heavily industrialised or contaminated areas may periodically have a higher concentration of CO2. Carbon dioxide is released during the beer brewing process and as you will see below, CO2 is toxic for living organisms. In brewery environments where process generated carbon dioxide is widely present, the maximum permitted carbon dioxide concentration according to most standards is as high as 5’000 ppm (5%) during an 8 hour working period.

Beer storage: Most beer leaves the brewery carbonated: beer and carbon dioxide are sealed in a container under pressure. It can be carbonated during fermentation but it can also be carbonated in the bottle. In this case the beer is allowed to ferment completely. It is left unfiltered which leaves active yeast suspended in it. A small amount of sugar is then added at bottling time. The yeast begins to act on the sugar: CO2 is released and absorbed by the beer.

Beer can also be force carbonated, in which case it is allowed to fully ferment. Then CO2 is pumped into a sealed container with the beer and absorbed by the liquid. In this case, a tank of carbon dioxide will also be required. Undetected leaks in a gas system is a costly waste and a safety risk to personnel. While small leaks are inherent in any gas system, those of significant size raise the level of economic and safety risk.

How does CO2 affect the human body?

Due to the health risks associated with carbon dioxide exposure, there are regulations and laws in place to avoid exposure! The US National Institute for Occupational Safety and Health (NIOSH) states that carbon dioxide concentrations exceeding 4% are immediately dangerous to life and health.

In indoor spaces occupied by people: concentrations higher than 1’000 ppm will cause  discomfort in more than 20% of occupants. At 2’000 ppm, the majority of occupants will feel a significant degree of discomfort and many will develop nausea and headaches.

How CO2 affects the body
How CO2 affects the body

Case study: The lake Nyos
The lake Nyos is a crater lake situated in Cameroon. In 1986, a pocket of magma from under the lake, leaked a large amount of CO2 into the air. The result was suffocation of around 1’700 people and 3’500 livestock!

As we take beer brewing seriously we will be sure to test a number of varieties with our colleagues from the world over at the Rotronic 2014 International Sales meeting in Grindelwald next week!

Dr Jeremy Wingate
Rotronic UK

CO2 Monitoring in the Beverage Industry

The Carbonating Process

Everybody loves a refreshing sparkling drink during the summer heat. CO2 does not only bring the bracing sparkling effect into your drink but even helps to conserve the beverage. A chemical reaction of CO2 and water forms carbonic acid which has an antibacterial effect. All well known soft drinks come with the right fizz.

The beverages are treated with a carbonating process just before the final bottling or canning. Carbonating systems mainly consist of a booster pump, a CO2 saturator, a carbonating tank and an optional CO2 analyser to check the carbon acid content of the final product.

With the aid of a booster pump the beverage mixture is conveyed to the saturator which works according to the Venturi principle. An optimising control keeps the flow velocity through the saturator within a constant working range. This generates a partial vacuum at the smallest cross section of the saturation which causes a reduction of the pressure level. This suction effect then mixes the CO2 with the beverage liquid. The short-time increase of the flow velocity guarantees a fine distribution of the gas and homogenous mixing.

The process essentially depends on the tank pressure which has to be set slightly higher then the saturating pressure of a specific product. Right after that, the drink is ready to be bottled automatically to preserve its texture.

diagram

CO2 saturator in a carbonating stage of a bottling line

Why the need to monitor CO2 in a beverage plant?

Carbonating processes use most of the CO2 in the beverage industry. But beside that the gas also occurs during fermentation or it is used for refrigeration – so CO2 is omnipresent in such facilities.

High concentrations of CO2 in closed areas where workers attend to their jobs can become a lethal risk. Extensive CO2 levels can lead to bad headaches, drowsiness, unconsciousness and even sudden death. A CO2 level above 5000ppm is considered as alarming. The gas can neither be recognised by its odour nor by its visual appearance. Soft-drink factories or breweries therefore require an accurate CO2 control and alarm system to maintain their high standard of operational safety.

Capture

To assure hygienic conditions and to reduce the risks of CO2 incidents, bottling lines which fill carbonated drinks are often operated in separated areas of a factory. There is a controlled loss of CO2 during the bottling or canning process of sparkling drinks which is minimal, but the amount adds up considering that industrial lines are able to fill up to 30.000 bottles an hour. With each filling a tiny amount of CO2 gets exposed to the surrounding atmosphere.

Factories require big amounts of CO2 which is delivered and stored in gas cylinders. During transport or storage there is always the risk of a thin crack occurring and that gas escapes unnoticed. Drinks which are not meant to be carbonized such as beer or wine also emit CO2 during the fermentation process. The gas needs to be release controlled. Also here leakage can be a danger and CO2 sensors help to keep control of the atmosphere.

This small insight shows how beverage manufacturers depend on reliable CO2 monitoring systems!

Candice – Sales Support

CO2 sensors for Schools – Rotronic Success Story

Rotronic CO2 sensors installed in Högalidskolan school in Stockholm in August 2012

Högalidsskolan school, opened in 1921, is located on the beautiful hills of Southern Stockholm and is home to one of the so-called ”palace” schools. The building consists of the three blocks, A, B and
C. Whereas some years ago the school had to cater for the needs of 1100 (later 900) pupils between 6 and 16, this primary school now  hosts 660 pupils, since their numbers were reduced due to a planned
renovation costing 167 MSEK.

In a meeting with headmaster Mattias Boström we discussed the importance of the indoor climate in the school. Old buildings generally have a natural draft as ventilation, but energy savings and the call for a more comfortable indoor temperature during wintertime resulted in less natural draft and, as a consequence, higher CO2 emissions.

Schools have long ago introduced ventilation routines, but these are difficult to stick to especially during the winter season because ventilation means cooling. In order to quickly reach acceptable CO2 levels, the consultant fi rm MAKAB recommended the installation of CO2 sensors to measure proper CO2 values in all areas where pupils are working.

After the installation of stand-alone CO2 sensors (no regulation system needed) in all 36 classrooms, it can be seen that in some rooms the CO2 level quickly crosses the threshold of 1000 ppm. Now, teachers and pupils are regularly checking whether the red LEDs on the sensors are lit to indicate that the 1000 ppm limit is exceeded.

Sometimes it is impossible to vacate the room immediately for CO2 remediation, but the sensor also displays the actual CO2 value and rate of change and thus is very valuable. The response from teachers and pupils so far has been very positive and shows that the CO2 sensor is a practical tool for keeping the indoor climate at
an acceptable quality.

After the renovation, the building will be equipped entirely with a new ventilation system with an advanced filtering to reduce particles in the air. But there will still remain a need to regularly check on the CO2, temperature and humidity levels.

Dr. Jeremy Wingate
Rotronic UK

CO2… what’s it all about

In 2011 Rotronic expanded its range of measurement parameters to include Carbon Dioxide gas measurements and now provides a range of transmitters, loggers, large panel displays and handhelds.

CO2 is becoming an increasing important gas to monitor and control for several reasons. This post will explore some of the science, applications and future trends for this ubiquitous gas…

CO2 and Human Health

CO2 can seriously effect human health. Figure 1 shows this relationship and the possible implications.

Effects of CO2Figure 1 – CO2 levels 

Fresh air typically has around 350-450 ppm CO2 however in exhaled air levels increase to around 38,000 – 50,000ppm! Metabolism and exercise can increase the rate of CO2 production.

In the UK we typically have poorly ventilated buildings in addition with increasing drives for energy efficiency, buildings are becoming more air tight and if not managed carefully air change rates can be further reduced.  To demonstrate how quickly CO2 can rise through poor ventilation Figure 2 shows a log of CO2, Temperature and Humidity overnight in my bedroom! You can see levels quickly increase to >2400ppm. The rapid drop is due to an opened window

CO2 record
Figure 2 – CO2 levels overnight (CO2 in ppm)

 

This direct relationship between CO2 and human occupation is a useful tool. It allows building management systems to control ventilation rates precisely to the levels required based on occupation rates. This can significantly reduce energy usage especially with the incorporation of variable speed fans.

Recent projects at Google’s Irish Headquarters and the Apple offices in Cork have used these principles to save energy and improve working conditions for their staff and achieve additional LEED points.

logos

 

 

 

Regulations are increasing for CO2 monitoring. Areas of interest especially we are seeing include Schools, Catering Areas and Car Parks.

If you have any queries relating to CO2 let us know!

Dr. Jeremy Wingate
Rotronic UK