Tag Archives: Calibration

Measuring in clean rooms – Hands on with the Rotronic CRP5

For many years Rotronic products have been widely used in the monitoring and control of clean rooms, however more often than not our products are found out of sight quietly performing their measurement tasks away from areas with strict requirements for cleanliness demanded by modern clean rooms.

In the past few months Rotronic have launched two new clean room panels that are as the name suggests designed specifically for use within clean room environments.

Our flagship product in the field is the CRP5 which we will take a look at first.

crp-5_pfad
CRP5 – Clean room From Rotronic

The CRP5 is a comprehensive clean room panel designed specifically for the requirements of modern clean rooms. Once installed the unit provides virtually no areas for dust to collect and the industrial glass front is extremely resistant to chemicals. With a fully configurable colour screen it is a stylish looking device!

CRP1a
Unpacking the CRP5, the glass front, colour display and stainless steel fittings make the CRP5 elegant, easy to clean and functional

Internally the CRP5 delivers some serious capability, providing potentially a solution for all your clean room measurement and monitoring requirements. Including;

  • Differential Pressure via internal diaphragm sensor (measurement via rear ports and front ports for flexible instalation and calibration).
  • Interchangeable humidity and temperature sensor.
  • Two fully configurable analogue inputs (for particle counters, lux meters etc)
  • Two configurable switch inputs (for pressure or door switches etc)
  • 6 configurable relays (for alarm triggers)
  • Digital connectivity via RS485 and Ethernet (Modbus or direct connection to Rotronic HW4 software)

A unique feature of the CRP5 is the optional flush mount humidity probe. The probe is locked into place through the use of magnets and can easily be removed for cleaning or calibration. An optional rear mount connection is available for Rotronic HC2 humidity and temperature probes should you wish to monitor ducts or spaces remote to the CRP5 itself.

CRP2
The unique removable Humidity and Temperature probe for ease of cleaning and calibration

The configurable colour display shows alarm conditions which can be acknowledged via the front panel. Alarms can be used to trigger relays associated with audible and larger visitual alarms. Interaction with the CRP5 is via four optical buttons –  their use is completely unaffected if operators are wearing protective gloves or not (unlike capacitive interfaces).

CRP3
Optical buttons can be used easily even when wearing gloves!

As an FDA and Gamp5 compliant device the CRP5 is a safe choice for regulated industries. The instrument can be used with 3rd party systems via its analogue outputs or industry standard Modbus TCP / RTU communication. Alternatively the CRP5 can be connected to the Rotronic HW4 software package to provide a one stop solution for monitoring, control and alarming. Pharmaceutical validation services as well as ISO 17025 (UKAS) calibrations are available from Rotronic if required.

To get some more detailed information about our clean room solutions give us a call or visit our website… Rotronic Website and CRP5 Datasheet

Next time we will look at the Rotronic CRP1 a dedicated temperature and humidity clean room panel for  applications with slightly simpler requirements but still demanding a clean installation  and high accuracy measurements!

crp1_side
The CRP1 – Humidity and Temperature measurements in clean rooms.

Dr Jeremy Wingate
Rotronic UK

Rotronic training course schedule 2016

We are pleased to announce our latest training course schedule for 2016. Courses include in partnership with Dave Ayres from Benrhos Ltd our practical 3 day temperature, humidity and dew point calibration and measurement uncertainty courses. In addition, for those seeking greater depth we are running dedicated courses on measurement uncertainty and ISO 17025 run by Lawrie Cronin and Dave Ayres

Temperature Humidity and Dew Point – Measurement, Calibration and Uncertainty

8th – 10th March :: 12th – 14th July :: 15th – 17th November
– Three day course at Rotronic UK offices and UKAS laboratory
– Practical applied knowledge and best practice
– Max 8 attendees to ensuring tailored content

Measurement Uncertainty for Laboratories and Plant

6th – 7th September
– Two day course at Rotronic UK offices
– Detailed knowledge for laboratory owners or process managers

Setting up and working with ISO17025

8th September
– One day course at Rotronic UK offices
– Ideal for ISO17025 lab managers or those looking to apply

For further information please do not hesitate to contact us.

 

Pharmacy Business Case – MEDICINES NEED WATCHING – CLOSELY!

Business Case BannerColleagues from our Swiss based HQ just outside Zurich have shared with us a great example of an increasingly important application based around the monitoring of medicines in typical high street pharmacies. Pharmacies may look like they simply store medicines on normal shelves but most drugs require strictly controlled and monitored conditions to ensure they reach us in perfect condition! Read on to discover more…

Medicines are sensitive products. Moisture or excessively high or low storage temperatures, can impair their quality. Incorrectly stored medicines lose their efficacy, leading to significant health risks. Correct storage is therefore vital, offering as it does the guarantee that medicines remain safe and efficacious and retain their high quality right up to their expiry date.

Meeting GDP/GMP requirements in pharmacies

The storage of medicines is legally regulated by GDP (Good Distribution Practice) Standard 9.2 and is inspected by the responsible authorities on site.

Insulins and other liquid antibiotics for instance must be stored in medicine refrigerators at a temperature between 2 °C and 8 °C. A temperature range of 15 °C to 25 °C applies to the vast majority of other medicines.It is compulsory to document the storage conditions of all medicines.

To help fulfil the legal requirements, Rotronic has launched the new HL-1D data logger – a convenient, precise, reliable logger that is virtually tailor-made for a medicinal environment.

Rosengarten Rotpunkt pharmacy

The HL-1D data logger has undergone exhaustive testing
under real-life conditions in the Rotpunkt Rosengarten
pharmacy. With its simple handling and remarkable price-performance ratio, the logger offers great potential for any pharmacy.

The Rosengarten Rotpunkt pharmacy is deeply rooted in the community of Bassersdorf, Switzerland and has been at its present location since 1985.

In 2011, Mr. Ivan Mihajlovic took over the directorship and today runs the pharmacy with a total of 10 employees.

Mr Ivan Mihajlovic
Mr Ivan Mihajlovic

“The quick evaluation of the data and the understandable visualization of the measurement values in a PDF report meet all QMS requirements and document the data long-term.”

HL-1D ideal for Pharmacies

Complete measurement chain

Rotronic offers complete solutions for the entire measurement chain. Even if you are already using other data loggers successfully, we have a range of innovative calibration solutions.

HL-1D for pharmacy

If you require more information or wish to discuss any monitoring, control or calibration applications you may have please do not hesitate to contact us.

Dr. Jeremy Wingate
Rotronic UK

What is Dew Point Temperature

Our state side colleagues have put together a great FAQ technical note explaining dew point temperature in more detail!

chilled mirror / dew point mirror
chilled mirror / dew point mirror

The FAQ technical note can be accessed here and answers the following key questions!

  1. What is dew point temperature?
  2. What is frost  point?
  3. When should I choose dew point as the parameter I measure?
  4. What are the pros and cons of measuring dew point versus relative humidity?
  5. Does dew point change as the ambient temperature changes?
  6. How does pressure affect dew point measurement?
  7. What are the common technologies for measuring dew point?
  8. Isn’t dew point temperature the same thing as wet bulb temperature?
  9. How do I know which technology is best for my application?
  10. Where can I buy a dew point instrument?

Rotronic produce precision low dew point sensors for low moisture applications in addition Rotronic UK is the UK distributor for world class MBW chilled mirrors, please contact us for additional information!

Dr Jeremy Wingate
Rotronic UK

Temperature, Humidity and Ceramic drying

Introduction

Ceramic drying is one of the most important processes in ceramic production technology. Quality defects of ceramic products are caused by improper drying. The drying affects the quality of the finished product, the throughput but also the overall energy consumption for ceramic manufacturing enterprises. According to various statistics, generally energy consumption during drying processes represents 15% of total industrial fuel consumption. However within the ceramic industry, the energy consumption used for drying accounts for a much higher percentage of the total fuel consumption. Therefore energy saving within the drying process is extremely important for all enterprises. Drying speed, reducing energy use , ensuring high quality products and reducing  pollution are all  basic requirements for any ceramic manufacturer today.

Measurement and Control in Ceramic Dying

Ceramic production is done through several main processes: casting, drying, glazing, firing…

The casting and drying are important processes for ceramic. A forming workshop is equipped with an intelligent control system. The control system regulates the relative humidity value using information provided via room and process sensors. Sensors have to measure accurately ad repeat ably despite the challenging and often dusty conditions. Humidification and dehumidification processes require substantial energy so tighter control is a huge energy saver for these industries.

A constant temperature is also achieved via the intelligent control system. With a stable temperature and stable relative humidity within the workshop, manufacturers ensure the quality of  the ceramic body drying.

After stripping the body from the cast, the body contains a very high relative humidity level. During the drying process, the body may crack or deform due to the speed in which the product is dried (volume and shrinkage) which ruins the product and decreases the throughput.

Exactly this part of the process has become a major bottleneck within the production process of ceramic products.

In a casting workshop, stable environments can reduce the cracking and deformation effectively. It also improves the throughput rate of semi-finished products and shortens the drying period, also prolonging the life frame of the  plaster cast.

So constant temperature and  relative humidity according to the set values will help all factories to improve the throughput, reach an optimal drying speed and deliver the best quality results available.

How can we help?

Rotronic provides a range of instruments for environmental monitoring and control.

Rotronic HC2-IC industrial temperature and humidity probes, are successfully working in these tough applications, the probes are installed on the roofs of drying chambers and resist chemical pollution. With a flexible  HF5  transmitter, the outputs can be set to the customers requirements.

With both digital and a range of analogue outputs available as well as several probe mounting options, products can be selected for all applications.

Measurement data can be viewed on HF5 with display or remotely via HW4 software. Ease of calibration and sensor replacement ensures down time is kept to an absolute minimum.

Dr Jeremy Wingate
Rotronic UK

 

Energy Efficiency and Reliability in Modern Data Centres

Introduction

Data centres are rapidly becoming the power houses of the modern world. Combined with the rise of digital industries, virtually all business operations now rely in some way on the transfer of data. As data transfer rates increase in tandem with an explosion in mobile communication the demands on data centre infra-structure are ever increasing.

It is estimated that by 2018 global data traffic will exceed 8500 exabytes (32% compound annual growth rate).

Data centres provide the infra-structure to support the transfer and hosting of data. They are often classified into 4 tiers. Tier 4 provides highest levels of redundancy, security and efficiency. For example, a Tier 4 data centre is required to have an uptime of 99.995% equivalent to less than 27 minutes downtime per year! Tier 4 sites have fully redundant systems, power supplies and biometric security. Zero downtime is the ideal as the costs incurred via end user penalties can be huge.

data centre tiers

Why the need to measure temperature, humidity and differential pressure?

Data centres must be maintained to specific environmental conditions to ensure the performance and longevity of the hardware installed. As standard, temperature must be 18-27 °C, dew point 5-15 °C dp and humidity no higher than 60 %rh. This ensures the hardware is at a suitable temperature, condensation is avoided and the chance of static build up is reduced (caused by low humidity).

A control range of ±9 °C may seem relatively broad, however 100% of the energy supplied to server hardware is converted to heat. In most data centres if the cooling system fails and servers are not shut down, heat levels will rise above a critical 35 °C within minutes or even seconds. If unchecked, temperature levels will rise causing hardware damage and can result in electrical fires.

Achieving the specified control range requires precision sensors and advanced control systems. Typically modern data centres are designed using computational fluid dynamics to ensure the very highest efficiency. Despite this it is estimated around 5% of US electrical energy used is for data centre cooling.

pue power usage effectiveness

Since 100% of electricity utilised by servers is converted to heat, theoretically a 100% efficient cooling system would require an equal amount of energy. Efficiency is measured by comparing total facility energy use, with IT equipment energy use. This is called Power Usage Effectiveness (PUE). Theoretically PUE can be 1 but typically reported values are above 2. By utilising precision measurements and design, modern data centres achieve PUEs of ~1.1!

An improvement of 0.5 in a data centre’s PUE  equates to a energy saving of ~£2.2 M & ~12,000 tonnes CO2 over 5 years (for a site with 1 MW load).

 

What solutions can Rotronic offer?

Rotronic provides a range of instruments for environmental monitoring and control. Reliable and precise outside air sensors and weather shields enable natural cooling to be utilised where possible.

Inside the data centres, Rotronic interchangeable HC2-S probes can provide a combination of precise, fast response temperature and humidity measurements with ease of calibration. Our latest PF4 differential pressure transmitters provide precision low drift measurements.

With both digital and a range of analogue outputs available as well as several probe mounting options, products can be selected for all applications.

Importantly though we aim to understand your needs and build a relationship with the goal of providing an appropriate solution, combining instruments, training, calibration and ongoing support.

Dr Jeremy WIngate
Rotronic UK

 

Sugar Production and Relative Humidity

The sugar market worldwide

Sugar is one of the most important raw materials traded on the worldwide markets.

Top 5 sugar producing companies

1. Suedzucker AG,

2. Cosan SA Industria & Comercio

3. British Sugar PLC

4. Tereos Internacional SA

5. Mitr Phol Sugar Corp.

In the 18th century only a few countries were producing sugar. However, these days over 100 nations process different base materials into sucrose. Remarkably India, China, Brazil & the European Union alone deliver 50% of the global demand.

Sugar Facts:

– Worldwide 170 million tons of raw sugar were produced in 2011/2012

– Brazil, India, China & EU are the most important sugar producing nations

– With an annual consumption of more than 24 million tons India, is the world’s largest market for raw sugar

Raw materials & processing

In temperate regions such as West, Central & Eastern Europe, the United States, China and Japan raw sugar is produced from sugar beet. However in the tropics and subtropics sugar is extracted from sugar cane.

800px-cut_sugarcane

Sugar cane & Sugar Beet

Processing

The processing of these two raw materials only differs in the first few steps. The main goal is to extract the juice, containing the sugar,  as efficiently as possible.

Extracting the sugar

Sugar cane is cut into small pieces during the harvest. It is then put through an industrial press to squeeze out the sweet sap.
Sugar beet has to be processed in extraction towers, where the plants release their sugar during a hot water treatment at 70°C.

Evaporation

After filtering the juice the water is extracted by passing through different stages of evaporators until only a thick syrup is left consisting of around 70% sugar.

Crystallisation

The syrup is then boiled until sugar crystals are formed. These crystals are then cleaned through centrifugation. To further improve purity this process is repeated twice.

Cooling & drying

Now the sugar has to be dried. One option is in large scale drum dryers at a temperature of 60°C. after drying, the sugar is cooled down on fluidized-bed coolers before heading to the warehouse or packed for shipping.

Trommel2_400_219_01

Inside a drum dryer.

Storage & logistics

Sugar belongs to the group of hygroscopic goods with an extremely low water content – below 1.5%. Basically sugar is a robust material but vulnerable to high humidity and temperature changes.
Generally it is recommended to store and transport sugar at a temperature of 20-25°C and 25-60% relative humidity.

By taking a closer look at the adsorption curve of sugar it is easy to see that over a long range of relative humidity the product quality is not affected. But as soon as the humidity level rises to 75% sugar starts to clump and above 80% relative humidity even dissolves .

Storage

Immediately after production the refined sugar is stored in humidity controlled sugar terminals or ventilated silos connected to dehumidifiers.

6.2.4. Sugar Terminal 5086

Sugar in a storage terminal

Logistics

Large quantities are trans-ported in silo trucks or train wagons. When sent by ship sugar is packed in double-walled bags made of natural fibre and plastic. If sealed like this, temperature is the crucial parameter which can affect the quality of the sugar. Due to big differences in temperature water vapour left inside the bags may cause clumping and even liquefaction.
The finer the sugar, the higher the risk of clumping.

Caking-dark-brown-sugar

Sugar clumping

Why the need to measure humidity?

As seen above, temperature and humidity measurements are crucial parameters in the sugar industry. Due to its hygroscopic behavior sugar can resist small changes in humidity, and slight temperature variations are not a major problem. But as soon as relative humidity rises above 80% or temperature changes significantly, the product can be destroyed as it clumps or even turns liquid.
During the process of evaporation, crystallisation, drying and cooling temperature and humidity play a huge role.

Philip Robinson                                                                                                        Rotronic UK

 

Humidity Control & Pharmaceutical Tablet Coating

Tablet coating in general

Pharmaceutical tablet coating involves the application of a coating composition to a moving bed of tablets with the use of heated air to facilitate the evaporation of the solvent. Several different types of coating are typically used.

Tablet Coating
Tablet Coating Machine
  • Sugar-coated tablets are coated with a coloured or an uncoloured sugar layer. The coating is water soluble and quickly dissolves after swallowing. The sugar-coating protects the encapsulated drug from the environment and provides a barrier to objectionable tablet taste or odour.
  • Film-coated tablets are compressed tablets coated with a thin layer of a polymer that forms a skin-like film. This is usually coloured and has the advantage over sugar coatings  that it is more durable, less bulky, and works faster at the desired location in the gastrointestinal tract.
  • Enteric-coated tablets have delayed release properties. They are designed to pass unchanged through the stomach to the intestines, where the tablets disintegrate and allow the drug to dissolve and start its effect. Enteric coatings are used when the drug substance itself would be destroyed by gastric acid or is irritating to the gastric mucosa.

Facts & figures:

Aspirin is one of the most used drugs in the world – approximately 35,000 metric tonnes are produced annually, enough to make over 100 billion aspirin tablets.

Americans consume 80% of the world`s supply of painkillers — more than 110 tons of pure, addictive opiates every year.

How can accurate measurements help?

Environmental control is the practice of managing the temperature, humidity, air circulation, ventilation and air pressure of a given space. Within certain types of pharmaceutical manufacturing processes, precise environmental control can help limit inefficiencies and potential problems.

Pharmaceutical tablet coating is one such application. Inefficiencies during the coating process may result in contamination and tablet impurity in the form of tablet-to-tablet colour variation, surface pitting from over-wetting, twinning due to spray drying, cracking or peeling. Most of these problems can be overcome by better control of the environment within the process. Over-wetting, for example, occurs when the coating hits the still wet tablet surface and the surrounding air does not dry it quickly enough. Another example involves spray drying, when the coating hits the tablet surface after the moisture has been removed resulting in poor adhesion of the coating.

In the case of incorrect cooling and drying of the sugar solution, a rough, translucent and uneven coating may be produced.

Since the required environment for a perfect coating strongly depends on the composition of the tablets, many pharmaceutical manufacturers have scientists who perform experiments to determine the ideal coating procedure including temperature and humidity levels. Once these specific requirements are determined, the set-points can be configured at the controller to enable the precision tablet-coating machines to work at optimal performance.

spoonfull of medicines
A spoonful of perfectly coated tablets!

Tablet Coating Benefits-Summary

  • covers the unpleasant taste, odour and colour
  • provides physical and chemical protection for the medicine (light, moisture and air)
  • controls the release of a drug (enteric coating)
  • improves the appearance of tablets
  • easier to swallow the tablets
  • assists and facilitate the identification of a drug
Dr. Jeremy Wingate
Rotronic UK

Greenhouses and environmental control

The idea of growing plants in environmentally controlled areas has existed since Roman times. The emperor Tiberius ate a cucumber-like vegetable daily. The Roman gardeners used artificial methods (similar to the greenhouse system) of growing to have the vegetable available on his table every day of the year.

The next step from the conventional greenhouse as we know it today will be the introduction of “vertical farms”. Currently, sophisticated so called “plantscrapers“ are being planned or are already under construction in Sweden, Japan, China, Singapore and the United States.

Skyscraper

Skyscraper farming might yet be a possible answer to the question of how to feed the nine billion people that are expected by the middle of the century. These types of green-houses have a tightly con-trolled level of temperature, humidity & CO2, sophisticated watering systems and in addition to sunlight, advanced artificial LED lighting that is specifically designed and installed for each plant family. This way, the crops grow much faster and very efficiently all year round. It is estimated, that the Swedish plantscraper that is planned to be 54m high, will produce thousands of tonnes of food a year, enough to feed up to 30,000 people.

Facts & figures:

  • Tomato is the second most important commercial vegetable crop after potato. Current world production is about 100 million tonnes produced on 3.7 million hectares.
  • In the year 2000, per capita consumption of fresh tomatoes in the U.S. was 17.8 lb,/ 8.73 kg.
  • About 85 percent of the world’s soybeans are processed, or “crushed,” annually into soybean meal and oil. Around 98 percent of the soybean meal that is crushed is further processed into animal feed.
  • The Food and Agriculture Organization of the United Nations (FAO) reports that world production of carrots and turnips (these plants are combined by the FAO for reporting purposes) for calendar year 2011 was almost 35,658 million tonnes.

Why do we need to measure humidity?

Greenhouse humidity levels are important both in prevent-ing plant diseases and promot-ing healthy and strong plant growth. High humidity can promote Botrytis and other fungal diseases. High humidity also restricts plant transpira-tion, which in turn limits evapo-rative leaf cooling and can lead to overheating of plant foliage. If high humidity persists for a long time, the restriction of transpiration can limit the “transpiration stream” of nutrients and can lead to nutrient deficiencies.

Low humidity levels are best avoided because these may increase foliar transpiration to the extent that the root system cannot keep up. Humidity is perhaps the most difficult of the greenhouse conditions to control. Most growers simply aim to avoid the extremes of humidity. Over most temperature ranges, a greenhouse humidity of 50 – 85 %rh is generally safe. Low humidity can be managed with the use of misters and foggers. It is also useful to shade plants under conditions of low humidity to reduce the rate of transpiration.

Transpiring plants add water vapour to the greenhouse air, increasing the humidity inside the greenhouse. Therefore, managing high humidity starts with ventilation control. Replacing warmer, humid greenhouse air with cooler, drier external air. Ventilation also involves significant energy losses, and therefore ventilation must often be accompanied by heating. Therefore, lowering greenhouse humidity with a combination of ventilation and heating increases energy costs significantly.

Candice 
Area Sales Manager