Tag Archives: Greenhouse

Measuring CO2 in a Greenhouse

CO2 in Greenhouses in General

CO2 is one of the key ingredients of photosynthesis, meaning it is essential for plants to grow. Monitoring CO2 in a greenhouse allows optimisation of plant growth conditions, resulting in more efficient plant growth and higher crop yield. Different plants need different levels of CO2 in the air to maximise development.

photo1

 

Facts & Figures

One of the largest greenhouses in the world is in Almeria, Spain where greenhouses cover almost 50000 acres (200km2)

In the Netherlands, greenhouses occupy 0.25% of the total land area.

The Netherlands has around 9000 greenhouse enterprises that operate over 10000 hectares of greenhouses and employ some 150000 workers: 80% of the manufactured produce is exported.

Why The Need to Measure CO2

It is essential to monitor CO2 levels at all times because different plants have different needs regarding CO2. Before photosynthesis, CO2 is collected by the enzyme RuBisCO. However, RuBisCO is just as happy to collect O2 as it is CO2. In C3 plants, RuBisCO collects CO2 from the air as soon as it comes through the stomata on the leaf. This means that if levels of CO2 in the air are low compared to levels of O2, the RuBisCO will just collect more O2 and the plant growth will be less efficient. In a C4 plant, there is an extra step during which CO2 is ‘filtered’ from the air and passed on to the RuBisCO. During this extra step, CO2 can be stored, meaning the stomata do not need to be open all of the time, helping to prevent water loss. In the C3 plant, the stomata need to be open more as there is not such storage of CO2. A third kind of plant, a CAM plant, can only collect CO2 at night, as its stomata are closed during the day.

Tomato_leaf_stomate_1-colorStomata on a tomato leaf

It is important to have close control of the ventilation of a greenhouse to utilise CO2 to maximum effect without risk
of damaging plants. Generally, the best practice is to provide increased CO2 to young plants and parent plants regularly, and to all other plants for a short period during spring. If the plant is sensitive it is extremely important to have pure CO2, to prevent damage. Up to 1 000 ppm CO2 is estimated as a good level.

If the levels of CO2 are too high in the greenhouse, plants can be damaged. If CO2 levels rise too high, plants will close their stomata to protect themselves, resulting in less transpiration, and therefore less nutrition is drawn through the plant, slowing down growth. CO2 levels vary considerably over a 24 hour period. This is because during the night, plants can stop photosynthesis (in the absence of light) and begin respiring. this means plants will switch from using CO2 to producing CO2.

plantsWhen there is plenty of light, a plant will photosynthesize, but when light levels are too low plants will begin to respire instead

What is the Result?

If all plants of a crop are grown in the same conditions (including CO2 levels), the chance that all plants will be ready for harvest at the same time is increased. The annual consumption of CO2 in a greenhouse is generally about 5-10 kg/m2, only in exceptional cases does would it be higher. The effect, of using CO2, on profit varies considderably. For example, tomatoes and cucumbers can give 8-10% higher return when growin in optimal CO2 levels. Plants grown in a CO2 enriched environment generally produce greater biomass than other plants, particularly in the roots, allowing faster growth and resulting in stronger plants with an increased reproductive rate.

Philip Robinson                                                                                                       Rotronic UK

Greenhouses and environmental control

The idea of growing plants in environmentally controlled areas has existed since Roman times. The emperor Tiberius ate a cucumber-like vegetable daily. The Roman gardeners used artificial methods (similar to the greenhouse system) of growing to have the vegetable available on his table every day of the year.

The next step from the conventional greenhouse as we know it today will be the introduction of “vertical farms”. Currently, sophisticated so called “plantscrapers“ are being planned or are already under construction in Sweden, Japan, China, Singapore and the United States.

Skyscraper

Skyscraper farming might yet be a possible answer to the question of how to feed the nine billion people that are expected by the middle of the century. These types of green-houses have a tightly con-trolled level of temperature, humidity & CO2, sophisticated watering systems and in addition to sunlight, advanced artificial LED lighting that is specifically designed and installed for each plant family. This way, the crops grow much faster and very efficiently all year round. It is estimated, that the Swedish plantscraper that is planned to be 54m high, will produce thousands of tonnes of food a year, enough to feed up to 30,000 people.

Facts & figures:

  • Tomato is the second most important commercial vegetable crop after potato. Current world production is about 100 million tonnes produced on 3.7 million hectares.
  • In the year 2000, per capita consumption of fresh tomatoes in the U.S. was 17.8 lb,/ 8.73 kg.
  • About 85 percent of the world’s soybeans are processed, or “crushed,” annually into soybean meal and oil. Around 98 percent of the soybean meal that is crushed is further processed into animal feed.
  • The Food and Agriculture Organization of the United Nations (FAO) reports that world production of carrots and turnips (these plants are combined by the FAO for reporting purposes) for calendar year 2011 was almost 35,658 million tonnes.

Why do we need to measure humidity?

Greenhouse humidity levels are important both in prevent-ing plant diseases and promot-ing healthy and strong plant growth. High humidity can promote Botrytis and other fungal diseases. High humidity also restricts plant transpira-tion, which in turn limits evapo-rative leaf cooling and can lead to overheating of plant foliage. If high humidity persists for a long time, the restriction of transpiration can limit the “transpiration stream” of nutrients and can lead to nutrient deficiencies.

Low humidity levels are best avoided because these may increase foliar transpiration to the extent that the root system cannot keep up. Humidity is perhaps the most difficult of the greenhouse conditions to control. Most growers simply aim to avoid the extremes of humidity. Over most temperature ranges, a greenhouse humidity of 50 – 85 %rh is generally safe. Low humidity can be managed with the use of misters and foggers. It is also useful to shade plants under conditions of low humidity to reduce the rate of transpiration.

Transpiring plants add water vapour to the greenhouse air, increasing the humidity inside the greenhouse. Therefore, managing high humidity starts with ventilation control. Replacing warmer, humid greenhouse air with cooler, drier external air. Ventilation also involves significant energy losses, and therefore ventilation must often be accompanied by heating. Therefore, lowering greenhouse humidity with a combination of ventilation and heating increases energy costs significantly.

Candice 
Area Sales Manager