Tag Archives: monitoring

Why do we need Warehouse Mapping?

Rotronic is proud to be able to offer an increasing range of products and services to meet the demands of our customers. The requirements for mapping especially thermal mapping are increasing dramatically in food, pharma and cosmetics production and transport industries.

But what is Thermal Mapping?
Mapping is the process of determining the temperature and often humidity gradients within a defined space. It is a vital process when the product is regulated by government agencies such as the US Food & Drug Administration (FDA) or the European Medicines Agency (EMA). Regulated materials must not exceed strict storage conditions. Fixed limits will typically exist for humidity and temperature both in terms of the absolute value and also the allowable rates of change. Mapping serves as a baseline for proving compliance within the storage spaces.

The reason for increasing regulatory compliance is to ensure products do not spoil or otherwise degrade during production, storage and transport. Warehouses are notorious for having warm or cold spots that are outside of the regular control specification. A proper mapping study serves to locate these spots and either modify or avoid the problem area. Similar problems can occur during transportation so increasingly transport is at least monitored if not fully controlled and mapped.

At 4.3 million square feet, the largest warehouse in the world is the Boeing Everett factory in Everett, WA USA. It was originally designed to construct the Boeing 747.

An FDA Form 483 is issued to a company’s management at the conclusion of an inspection when an investigator(s) has observed any conditions that in their judgement may constitute violations of the Food Drug and Cosmetic (FD&C) Act and related Acts.

Mapping in General
A mapping strategy is needed for several reasons. It is important for regulators or quality managers to understand the philosophy employed for the mapping. A documented strategy will decrease questions from any regulators reviewing your mapping study. The strategy document also helps them understand the data that is produced by the mapping process. The document acts as a tool for collaboration as other people may suggest ideas that will make your study produce better data or make your effort more efficient.

As the mapping study progresses from start to finish, the strategy document acts as your reference guide, ensuring you remain true to the agreed upon process and do not make changes that will negatively affect the study. A typical strategy is usually comprised of a few written paragraphs that includes a description of the warehouse space, the type of equipment used, the number of sensors to be used, a general idea of the sensor placement, and the duration of the study. It is not unusual for the mapping strategy to change as it evolves. Writing a detailed document at the early stages of the project may cause re-writes that can increase the total length of the project. It is usually more efficient to fully document the warehouse mapping project after the strategy is agreed. Think of the strategy document as a proposal for your mapping team or the approval team so they can buy into and understand your mapping strategy. It may also facilitate the final approval stage, later in the project, because the auditor already understands the warehouse mapping project.

Continuous Monitoring After the Warehouse Mapping
Continuous monitoring is a best practice within controlled and regulated spaces. The mapping study will determine the hot and cold zones for “worst case” sensor placement. These worst case locations should be considered when installing a permanent, continuous monitoring system. The number of sensors used for a permanent system will be far fewer than what is required for the mapping study. In some cases, continuous monitoring may require only a few sensors once the problem areas have been determined through the mapping study. A continuous monitoring system offers peace of mind as product components, manufacturing space, or storage space are maintained and on record as meeting specified environmental conditions.

If you have any queries regarding warehouse mapping feel to get in touch and we will be happy to discuss!

Dr Jeremy Wingate
Rotronic UK

Energy Efficiency and Indoor Air Quality

Some of the key factors for improving energy efficiency in relation to indoor applications are the control of Relative Humidity (RH) and temperature. The question is, how to control RH to acceptable levels in an energy efficient manner. Energy efficient humidity control has a very strong bearing on thermal comfort, Indoor Air Quality (IAQ) and eventually on the health and performance of occupants in air-conditioned buildings.

slider-pane1-new

Passivhaus buildings are built to a voluntary standard to improve energy efficiency and reduce ecological footprint.

IAQ control seeks to reduce Volatile Organic Compounds (VOCs), and other air impurities such as microbial contaminants. As such it is important to control relative humidity which can be a key factor leading to mould growth and the presence of bacteria and viruses, dust mites and other such organisms.

Buildings rely on a properly designed ventilation system to provide an adequate supply of cleaner air from outdoors or filtered and recirculated air

TrueDry_DR120_HR

Buildings may rely on dehumidifiers like the one above to reduce RH levels to a comfortable range

Air-conditioning systems typically employ a high level of air recirculation to save energy during cooling and dehumidification. Typically recirculation rates are around 80-90%, but can sometimes be even higher. The challenge is not so much in dehumidification, but in doing so without having to overcool. As such, ventilation is integrated for general comfort and economical saving.

Rooms are often designed with specific conditions in mind including temperature, humidity, brightness, noise, and air flow. Careful engineering and implementation of building automation and control is the only way to ensure energy efficiency and building operation conditions are met during occupancy, at the lowest possible costs.

IAQ Facts:

Energy Efficiency (EE) refers to either the reduction of energy inputs for a given service or the enhancement of a service for a given amount of energy inputs.

Relative humidity is highly temperature dependent, so if the temperature is stable, it is much easier to achieve a stable RH.

Air in our atmosphere is a mixture of gases with very large distances between molecules. Therefore, air can accommodate a large quantity of water vapor. The warmer the air, the more water vapor can be accommodated.

Why the need to measure, temperature and relative humidity?

Precise temperature control of air which is supplied to a room results in maximum comfort for the occupants. The temperature should be held constantly at a particular set point to achieve this comfort.

Readings from temperature transmitters installed in the air supply duct are compared to readings inside a particular room. It is easiest to achieve a constant room temperature if there is little difference between the two values. Air temperature control in supply ducts can be employed in rooms in which the air handling unit is used mainly for the renewal of air.

hf3_2_o_display_1

Rotronic manufactures temperature and humidity transmitters such as the one above which are suitable for use in spaces where appearance is a factor.

It is with good RH control that we can process the air for air conditioned rooms independent of the state of outside air and the processes taking place in the room. This way the RH remains constant or within the preset limits and thus energy consumption for humidification and dehumidification is minimized.

Air conditioning is supposed to maintain room temperature and RH as precisely as possible through the use of systems which monitor and control temperature and humidity in the room (or in the air supply ducts to the room). Systems must be dynamic to manage the changing room air quality depending on the occupants and usage.

With precise measurement and control of temperature and humidity, energy consumption for humidification & dehumidification as well as heating and cooling can be reduced leading to energy efficient building operation with lower energy costs and healthier occupants.

Phil Robinson
Rotronic UK

CO2 in Garages and Tunnels.

Modern vehicle engines emit many harmful substances, including carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), hydrocarbons and some 20 other gases. It is known that all engines produce CO, particularly at cold start. To protect ourselves from this toxic gas, vehicles are installed with catalytic converters. This means that a warm running modern engine with converter generates 140 times more CO2 than CO.

catalytic_converterCatalytic converters convert a lot of the CO produced by an engine into CO2.

Facts and Figures

The longest tunnel in Switzerland will be the Gotthard Base Tunnel (under construction) that will be 57km long. The tunnel is a railway tunnel.

The longest car tunnel in the world is located in Norway, the Laerdal tunnel, 24km.

The LEP tunnel in Cern, Switzerland/France is a 26km circular ring.

Why the need to measure CO2?

Old vehicles (pre-catalyst) generate a lot of carbon monoxide pollution, to solve this, modern vehicles were installed with catalytic converters. Catalytic converters are not very efficient during cold start up but once warm they can convert CO to CO2 very effectively. This means modern engines emit much higher quantities of CO2 than CO. It is well-known that CO is extremely toxic but CO2 in high levels can also be hazardous to health. To ensure healthy air quality it is important to provide excellent ventilation in garages and tunnels, however running a ventilation system constantly is inefficient especially when few cars are running at a time.

SAM_3014Levels of CO2 in large indoor car parks can become extremely dangerous if not properly controlled.

In garages and tunnels vehicles can be operating in both warm and cold conditions, therefore it is important to measure both CO and CO2 to ensure a safe environment. Today there are laws around the measuring of CO – the maximum allowed value is 35 ppm. There are however, currently no rules on measuring CO2 but this is equally as important.

How does it work?

A meter can both control and alarm locally, as well as being part of a larger complete system. This application is similar, for example, to the ventilation requirements in a classroom.

The ventilation need depends on the number of cars running in a garage or tunnel instead of the number of students in a classroom. The sensors usually used to measure CO2 and CO in public garages and tunnels are capable of covering an area of around 250 m2.

Reduced Costs

A study was made in a garage containing 77 parking places and covering an area of 1,445 m2. The study showed that using sensors to control the ventilation reduced the fan operating time by 90% compared to constant running. The electricity cost was about €0.09 per kW/h (including energy tax and VAT) and the fan used 1.5 kW/h in operation. This meant that the demand-control solution produced an energy saving, per month, of 970 kW/h, and a resulting reduction in running-costs of ca 85.32 €/month. If all residential garages were equipped this way the sum of energy saved would make for a considerable benefit to society and the environment. A larger garage would have saved even more money thanks to the controlled ventilation system.

c700x420Ventilation plays a vital role in keeping in door parking spaces safe, especially when busy.

Another benefit is fewer people suffering from CO or CO2 poisoning being admitted to hospitals. As well as being good for the health of the general public, This helps reduce the costs of health care to the government.

Phil Robinson                                                                                                           Rotronic UK

Monitoring Transportation

Rotronic has recently released a cold chain logger which can be used to ensure items are kept at the correct temperature during transportation.

tl-cc1_0094Rotronic cold chain logger

Transportation in general

One key aspect of today´s wealth in the modern world is specialization. So towns, regions or even whole countries focus on a few things they are really good at. This can be based on various factors; for example resources offered by the land, climatic conditions or specific knowledge that has been developed over a long period and has been passed on from generation to generation. As an example, Cuba provides brilliant conditions for the Corojo and Cirollo plants, better known as tobacco. Although smoking is quite popular among Cubans, their production of tobacco exceeds the local demand by far. On the other hand they lack other resources and goods. At that point trading, and therefore the importance of transportation, comes into play. In the case of the tobacco the transportation is not a simple task, since it requires a constant high humidity level to maintain the high quality expected from a Cuban cigar.

Tobacco-Fields-in-VinalesTobacco plants in Cuba

Like tobacco there are many products where special requirements for shipping have to be put in to consideration, in order to maintain freshness, internal integrity, colour quality or whatever other properties that could be affected by an inappropriate transportation.

Facts & figures:

A major step in the transportation industry was the international standardisation of shipping containers in 1955. This means that one container can be put directly from a vessel to a truck and transported all around the globe.

Today 28´000´000 ISO containers (20 feet) are permanently on the move, transporting goods from point to point keeping our economy running.

Every year 10´000 shipping containers fall over board.

0.16 Euro cents is the cost of transporting a bottle of Chilean whine to Europe.

Why the need to monitor transportation?

Various factors can have a negative impact on a product during transportation. Below are the most common parameters to be monitored to ensure product quality:

Temperature

Controlling temperature is the key in transporting fresh foods, where the rate of decomposition is reduced significantly by maintaining lower temperatures. It is also important as proof of an uninterrupted cool chain for frozen products or to ensure the effectiveness of medication.

truck_insidesthe back of a temperature controlled lorry.

Humidity

Monitoring humidity ensures that the growth of micro organisms in food and medications remains below critical levels. Controlling humidity also helps to maintain structural integrity of paper and cardboard or to avoid corrosion of metals during a long transatlantic journey in a shipping container.

Pressure

Apart of being able to reconstruct when and how long a parcel`s flight was, pressure is also en essential parameter for products that have to be transported in a vacuum or pressured chamber. This method could for example be used when transporting biological samples or hazardous chemicals.

Shock

To guarantee that expensive machinery, glass, works of art and other delicate products weren’t damaged during transportation, monitoring of the G-force in all three axis is the solution.

Rotronic-HygroLog-Log-HC2-P1-Universal-Humidity-and-Temperature-Data-Logger-Humidity-and-Temperature-Measurement---Large-21391770915

 

The Rotronic LOG-HC2 can log light, temperature, humidity, pressure, and shock.

Light

Light is a good parameter to determine if or at what time a container or package was opened. Also to ensure protection of light sensitive products such as vegetable oils, chemical substances or photo paper.

Philip Robinson                                                                                                       Rotronic UK

CO2 and Indoor Air Quality (IAQ)

Indoor Air Quality in General

The quality of the air in a room can greatly affect the health, productivity, and well being of any occupants. Previously the temperature and humidity of indoor air were considered as the most important parameters contributing to air quality, but there are several other factors which must be taken into account.

Indoor Air Quality (IAQ) problems are very often caused by gases or particles released into the air by pollution sources. This can be avoided by carefully selecting the materials which are to be used inside dwellings, offices, classrooms, gymnasiums, hotels, shopping malls, hospitals and in all en-closed spaces which are inhabited. But there is another source of air pollution, which cannot be avoided. this other source is people themselves. Every time a person exhales, CO2 is released. Inadequate ventilation may increase CO2 concentration to an unhealthy or even life-threatening level.

carbon_dioxide_3d_ball

CO2: made up of 2 oxygen atoms, double bonded to a single carbon atom.

The most important control parameters for a good Indoor Air Quality are temperature, relative humidity and CO2 concentration. If these values are used with an intelligent air conditioning system, an energy efficient air supply can be used to produce a high quality atmosphere.

Facts & figures:

CO2 is a naturally occurring molecule consisting of two oxygen atoms and a single carbon atom.

At standard temperature and pressure CO2 is a gas, invisible and without any smell or taste.

CO2 is 50% heavier than air and has no liquid state under atmospheric pressure.

In the earth’s atmosphere CO2 has a concentration of 390 ppm by volume.

The worldwide industry produces approximately 36 billion tons of CO2 per year.

Industrial activities are responsible for an increase of atmospheric CO2 concentration and thus for an increase of global warming (greenhouse effect).

Influence of CO2 on Humans

Only a small amount of the atmosphere is made up of CO2, the prevailing components are nitrogen and oxygen. The natural outdoor atmosphere CO2 level is approx. 390 ppm. Increasing this concentration causes several symptoms of poisoning, ranging from drowsiness at around 1´000ppm to unconsciousness and even death at above 10´000 ppm. Even if a  rise in CO2 concentration has not yet severely influenced the health of people, it may reduce their productivity, efficiency and well-being.

270px-Main_symptoms_of_carbon_dioxide_toxicity.svg

 

Some of the possible health effects

How to Measure CO2

The most common measuring method for CO2 concentration nowadays is based on a spectroscopic principle. Sending infrared light (IR) with a wave length of 4.23 μm through a gas sample. CO2 molecules in the sample absorb the light at this wavelength. an IR sensor is then used to detect any changes in the energy levels of the light after passing through the sample. The more C)2 in the sample, the more of the light that will be absorbed, and the weaker the IR signal will be when it reaches the sensor.

ndir-sensor_1

Example of an IR CO2 sensor

The sensitivity of a CO2 sensor increases with the length of the light path through the sample gas. Thus the sensor used in Rotronic CO2 measuring devices makes use of multiple reflections of the IR beam on the walls of the probe chamber. this means the small CO2 sensor (2.5 cm x 5 cm) has a measuring path length of 12.5 cm and is accordingly sensitive. This type of sensor is called a NDIR (Non Dispersive Infra Red) sensor. This means that a broadband IR light source is used and the measured wavelength is filtered out at the end of the beam in front of the IR detector.

Why the Need to Measure CO2

New energy efficient demands lead to more airtight buildings and ventilation being completely turned off at night. Intelligent HVAC systems must be able to adapt themselves to situations with changing occupants of rooms. One answer is Demand Controlled Ventilation (DCV) with built-in CO2 sensors. By using DCV, huge amounts of energy can be saved without any drawback for the occupants. According to a study of the UN Climate Panel 40-50% of world energy is used in buildings. Only the adoption of the EU Directive on Energy Efficient Buildings would result in saving 30-45 MT of CO2/year. As HVAC (Heating, Ventilation and Air Conditioning) is responsible 40-65% of energy usage in commercial and public buildings, a balance between comfort and energy saving must be found.

HVAC

A large HVAC system

One example demonstrates the evidence of CO2 controlled room ventilation. The exhaled air of a human contains up to 40´000 ppm CO2. In one hour a person breathes out 15 litres of CO2. Thus in a classroom with a volume of 200 m³ occupied by 25 pupils the CO2 concentration increases in one hour by 1´875 ppm!

Especially in wine cellars, breweries, the beverage industry and other industries in which CO2 may be produced or processed the constant measuring of CO2 concentration is absolutely vital to prevent a deadly threat to the employees. This is not only a rational procedure but is also enforced by official regulations in nearly every developed country.

Philip Robinson                                                                                                       Rotronic UK

Wind Turbines

Its been pretty windy recently, So wind farms are probably doing quite well at the moment. The biggest wind farm in the world, at the moment, is the London array, which can produce 630MW of power.

Wind Energy in General

The future is very encouraging for wind power. The technology is growing exponentially due to the current power crisis and the ongoing discussions about nuclear power plants. Wind turbines are becoming more efficient and are able to produce increased electricity capacity given the same factors.

Facts & figures:

There is over 200 GW (Giga Watts) of installed wind energy capacity in the world.

The Global Wind Energy Council (GWEC) has forecasted a global capacity of 2,300 GW by 2030. This will cover up to 22% of the global power consumption.

WindPower
Converting wind power into electrical power:

A wind turbine converts the kinetic energy of wind into rotational mechanical energy. This energy is directly converted, by a generator, into electrical energy. Large wind turbines typically have a generator installed on top of the tower. Commonly, there is also a gear box to adapt the speed. Various sensors for wind speed, humidity and temperature measurement are placed inside and outside to monitor the climate. A controller unit analyses the data and adjusts the yaw and pitch drives to the correct positions.

The formula for wind power density: 

W = d x A^2 x V^3 x C  

d: defines the density of the air. Typically it’s 1.225 Kg/m3. This is a value which can vary depending on air pressure, temperature and humidity.

A^2: defines the diameter of the turbine blades. This value is quite effective with its squared relationship. The larger a wind turbine is the more energy can be harnessed.

V^3: defines the velocity of the wind. The wind speed is the most effective value with its cubed relationship. In reality, the wind is never the same speed and a wind turbine is only efficient at certain wind speeds. Usually 10 mph (16 km/h) or greater is most effective. At high wind speed the wind turbine can break. The efficiency is therefore held to a constant of around 10 mph.

C: defines the constant which is normally 0.5 for metric values. This is actually a combination of two or more constants depending on the specific variables and the system of units that is used.

nordex-wind-turbine-450-x-299

Why the need to measure the local climate?

To forecast the power of the wind over a few hours or days is not an easy task.

Wind farms can extend over miles of land or offshore areas where the climate and the wind speed can vary substantially,
especially in hilly areas. Positioning towers only slightly to the left or right can make a significant difference because the wind velocity can be increased due to the topography. Therefore, wind mapping has to be performed in order to determine if a location is correct for the wind farm. Such wind maps are usually done with Doppler radars which are equipped with stationary temperature and humidity sensors. These sensors improve the overall accuracy.

Once wind mapping has been carried out over different seasons, wind turbine positions can be determined. Each turbine will be equipped with sensors for wind direction, speed, temperature and humidity. All of these parameters, the turbine characteristics plus the weather forecast, can be used to make a prediction of the power of the turbine using complex mathematics.

wind-turbine-controlThere is a small weather station on the top of this wind turbine

The final power value will be calculated in “watts” which will be supplied into power grids. Electricity for many houses or factories can be powered by this green energy.

Why the need to measure inside a wind turbine?

Wind farms are normally installed in areas with harsh environments where strong winds are common. Salty air, high humidity and condensation are daily issues for wind turbines.

Normal ventilation is not sufficient to ensure continuous operation. The inside climate has to be monitored and dehumidified by desiccant to protect the electrical components against short circuits and the machinery against corrosion.

Internal measurements are required to ensure continuous operation and reduce maintenance costs of a wind farm.

Philip Robinson                                                                                                       Rotronic UK

Chicken Hatcheries.

As it is nearly Easter, I thought it would be a good idea post something related to eggs, unfortunately not the chocolate kind…

Chicken hatcheries in general

It takes about 21 days to hatch a chicken and during that time, it is crucial that the surroundings are controlled for it to be successful. Egg hatching farms transform the chickens into “broilers” or egg laying hens. Meat from egg hatching farms is the most consumed worldwide.

Facts & figures:

Approximately 49 billion chickens are consumed worldwide every year. That is 134 million every day.

Chicken is the most common type of poultry in the world.

100g of baked chicken breast contains 4 grams of fat and 31 grams of protein.

Sustainability of chicken meat increases by 20%, when using CO2 for modified atmosphere processing.

maxresdefault

Why the need to measure CO2?

Less staff required to run the breeding stations thanks to all hatching happening at around the same time. This means it is easier to plan shipments and know how many birds can be transported at a time. This results in less capital and reduced transport costs.

A smaller number of birds die during transportation, which results in more profit per shipment and less feed losses.

More efficient and cheaper feeding options, both through feed reduction and reduction in time.

Chickens_eating

Faster and easier to slaughter the animals using CO2, and there is no unnecessary suffering to the birds.

download

Packing using CO2, means food will last longer in supermarkets and for customers once purchased. This means a reduction in food waste from expired food.

How does it work?

The fertilized eggs are placed in a chamber, in which CO2 levels are controlled, depending on what stage of development the eggs are in. Living eggs contribute to the levels of CO2 (not 100% of all eggs are alive), which means that you have to monitor the CO2 continuously.

It has been shown that during embryonic development, the supply of CO2 has positive effects on the health of the organism after birth. Control of CO2 in chickens in development has also led to a more controlled hatching time.

3519914477_0b8db35d7f

Once CO2 levels insid an egg reach a certain level, the fully developed chickens start to hatch. When the chick has hatched, oxygen will be supplied. Once the eggs are hatched, they are sent off in trucks where the birds continue to develop during the transportation. To ensure the good health of the chicks during their transportation, the CO2 levels in the truck are controlled for the whole journey.

It has been found that a bird’s metabolism works slower at high concentrations of CO2. Controlling CO2 levels therefore means it can take less time and less food to raise broilers or egg laying hens. This means production will be cheaper for the companies, it´s also more sustainable to use less feed per pound of chicken.

The chickens are slaughtered after being knocked out with high levels of CO2, which only take a few seconds. This method is more humane than killing by electrical stunning.

Philip Robinson                                                                                                       Rotronic UK